手机版
明星网 >> 人工智能

人工智能

人工智能个人资料:

中文名称:人工智能 外文名称:ARTIFICIALINTELLIGENCE 简称:AI 提出时间:1956年 提出地点:DARTMOUTH学会 名称来源:雨果·德·加里斯的著作 ...

强弱对比

人工智能的一个比较流行的定义,也是该领域较早的定义,是由约翰·麦卡锡(JOHN MCCARTHY)在1956年的达特矛斯会议(DARTMOUTH CONFERENCE)上提出的:人工智能就是要让机器的行为看起来就象是人所表现出的智能行为一样。但是这个定义似乎忽略了强人工智能的可能性(见下)。另一个定义指人工智能是人造机器所表现出来的智能性。总体来讲,对人工智能的定义大多可划分为四类,即机器“像人一样思考”、“像人一样行动”、“理性地思考”和“理性地行动”。这里“行动”应广义地理解为采取行动,或制定行动的决策,而不是肢体动作。

强人工智能(BOTTOM-UP AI)

强人工智能观点认为有可能制造出真正能推理(REASONING)和解决问题(PROBLEM_SOLVING)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:

类人的人工智能,即机器的思考和推理就像人的思维一样。

非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。

弱人工智能(TOP-DOWN AI)

弱人工智能观点认为不可能制造出能真正地推理(REASONING)和解决问题(PROBLEM_SOLVING)的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。

主流科研集中在弱人工智能上,并且一般认为这一研究领域已经取得可观的成就。强人工智能的研究则处于停滞不前的状态下。

对强人工智能的哲学争论

“强人工智能”一词最初是约翰·罗杰斯·希尔勒针对计算机和其它信息处理机器创造的,其定义为:

“强人工智能观点认为计算机不仅是用来研究人的思维的一种工具;相反,只要运行适当的程序,计算机本身就是有思维的。”(J SEARLE IN MINDS BRAINS AND PROGRAMS. THE BEHAVIORAL AND BRAIN SCIENCES,VOL. 3,1980)这是指使计算机从事智能的活动。在这里智能的涵义是多义的、不确定的,像下面所提到的就是其中的例子。利用计算机解决问题时,必须知道明确的程序。可是,人即使在不清楚程序时,根据发现(HEU- RISTIC)法而设法巧妙的解决了问题的情况是不少的。如识别书写的文字、图形、声音等,所谓认识模型就是一例。再有,能力因学习而得到的提高和归纳推理、依据类推而进行的推理等,也是其例。此外,解决的程序虽然是清楚的,但是实行起来需要很长时间,对于这样的问题,人能在很短的时间内找出相当好的解决方法,如竞技的比赛等就是其例。还有,计算机在没有给予充分的合乎逻辑的正确信息时,就不能理解它的意义,而人在仅是被给予不充分、不正确的信息的情况下,根据适当的补充信息,也能抓住它的意义。自然语言就是例子。用计算机处理自然语言,称为自然语言处理。

关于强人工智能的争论不同于更广义的一元论和二元论(DUALISM)的争论。其争论要点是:如果一台机器的唯一工作原理就是对编码数据进行转换,那么这台机器是不是有思维的?希尔勒认为这是不可能的。他举了个中文房间的例子来说明,如果机器仅仅是对数据进行转换,而数据本身是对某些事情的一种编码表现,那么在不理解这一编码和这实际事情之间的对应关系的前提下,机器不可能对其处理的数据有任何理解。基于这一论点,希尔勒认为即使有机器通过了图灵测试,也不一定说明机器就真的像人一样有思维和意识。

也有哲学家持不同的观点。DANIEL C. DENNETT 在其著作 CONSCIOUSNESS EXPLAINED 里认为,人也不过是一台有灵魂的机器而已,为什么我们认为人可以有智能而普通机器就不能呢?他认为像上述的数据转换机器是有可能有思维和意识的。

有的哲学家认为如果弱人工智能是可实现的,那么强人工智能也是可实现的。比如SIMON BLACKBURN在其哲学入门教材 THINK 里说道,一个人的看起来是“智能”的行动并不能真正说明这个人就真的是智能的。我永远不可能知道另一个人是否真的像我一样是智能的,还是说她/他仅仅是看起来是智能的。基于这个论点,既然弱人工智能认为可以令机器看起来像是智能的,那就不能完全否定这机器是真的有智能的。BLACKBURN 认为这是一个主观认定的问题。

需要要指出的是,弱人工智能并非和强人工智能完全对立,也就是说,即使强人工智能是可能的,弱人工智能仍然是有意义的。至少,今日的计算机能做的事,像算术运算等,在百多年前是被认为很需要智能的。

研究方法

如今没有统一的原理或范式指导人工智能研究。许多问题上研究者都存在争论。其中几个长久以来仍没有结论的问题是:是否应从心理或神经方面模拟人工智能?或者像鸟类生物学对于航空工程一样,人类生物学对于人工智能研究是没有关系的?智能行为能否用简单的原则(如逻辑或优化)来描述?还是必须解决大量完全无关的问题?

智能是否可以使用高级符号表达,如词和想法?还是需要“子符号”的处理?JOHN HAUGELAND提出了GOFAI(出色的老式人工智能)的概念,也提议人工智能应归类为SYNTHETIC INTELLIGENCE,[29]这个概念后来被某些非GOFAI研究者采纳。

大脑模拟

主条目:控制论和计算神经科学

20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控制论之间的联系。其中还造出一些使用电子网络构造的初步智能,如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。 这些研究者还经常在普林斯顿大学和英国的RATIO CLUB举行技术协会会议.直到1960, 大部分人已经放弃这个方法,尽管在80年代再次提出这些原理。

符号处理

主条目:GOFAI

当20世纪50年代,数字计算机研制成功,研究者开始探索人类人工智能智能是否能简化成符号处理。研究主要集中在卡内基梅隆大学, 斯坦福大学和麻省理工学院,而各自有独立的研究风格。JOHN HAUGELAND称这些方法为GOFAI(出色的老式人工智能)。[33] 60年代,符号方法在小型证明程序上模拟高级思考有很大的成就。基于控制论或神经网络的方法则置于次要。[34] 60~70年代的研究者确信符号方法最终可以成功创造强人工智能的机器,同时这也是他们的目标。

认知模拟经济学家赫伯特·西蒙和艾伦·纽厄尔研究人类问题解决能力和尝试将其形式化,同时他们为人工智能的基本原理打下基础,如认知科学, 运筹学和经营科学。他们的研究团队使用心理学实验的结果开发模拟人类解决问题方法的程序。这方法一直在卡内基梅隆大学沿袭下来,并在80年代于SOAR发展到高峰。基于逻辑不像艾伦·纽厄尔和赫伯特·西蒙,JOHN MCCARTHY认为机器不需要模拟人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表示, 智能规划和机器学习. 致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他地方开发编程语言PROLOG和逻辑编程科学.“反逻辑”斯坦福大学的研究者 (如马文·闵斯基和西摩尔·派普特)发现要解决计算机视觉和自然语言处理的困难问题,需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行为。ROGER SCHANK 描述他们的“反逻辑”方法为 "SCRUFFY" .常识知识库 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因为他们必须人工一次编写一个复杂的概念。基于知识大约在1970年出现大容量内存计算机,研究者分别以三个方法开始把知识构造成应用软件。这场“知识革命”促成专家系统的开发与计划,这是第一个成功的人工智能软件形式。“知识革命”同时让人们意识到许多简单的人工智能软件可能需要大量的知识。

子符号法

80年代符号人工智能停滞不前,很多人认为符号系统永远不可能模仿人类所有的认知过程,特别是感知,机器人,机器学习和模式识别。很多研究者开始关注子符号方法解决特定的人工智能问题。

自下而上, 接口AGENT,嵌入环境(机器人),行为主义,新式AI机器人领域相关的研究者,如RODNEY BROOKS,否定符号人工智能而专注于机器人移动和求生等基本的工程问题。他们的工作再次关注早期控制论研究者的观点,同时提出了在人工智能中使用控制理论。这与认知科学领域中的表征感知论点是一致的:更高的智能需要个体的表征(如移动,感知和形象)。计算智能80年代中DAVID RUMELHART 等再次提出神经网络和联结主义. 这和其他的子符号方法,如模糊控制和进化计算,都属于计算智能学科研究范畴。

统计学法

90年代,人工智能研究发展出复杂的数学工具来解决特定的分支问题。这些工具是真正的科学方法,即这些方法的结果是可测量的和可验证的,同时也是人工智能成功的原因。共用的数学语言也允许已有学科的合作(如数学,经济或运筹学)。STUART J. RUSSELL和PETER NORVIG指出这些进步不亚于“革命”和“NEATS的成功”。有人批评这些技术太专注于特定的问题,而没有考虑长远的强人工智能目标。

集成方法

智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。最简单的智能AGENT是那些可以解决特定问题的程序。更复杂的AGENT包括人类和人类组织(如公司)。这些范式可以让研究者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。一个解决特定问题的AGENT可以使用任何可行的方法-一些AGENT用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被广泛接受。AGENT体系结构和认知体系结构研究者设计出一些系统来处理多ANGENT系统中智能AGENT之间的相互作用。一个系统中包含符号和子符号部分的系统称为混合智能系统 ,而对这种系统的研究则是人工智能系统集成。分级控制系统则给反应级别的子符号AI 和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。RODNEY BROOKS的SUBSUMPTION ARCHITECTURE就是一个早期的分级系统计划。

智能模拟

机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信息感应与辨证处理。

学科范畴

人工智能是一门边沿学科,属于自然科学、社会科学、技术科学三向交叉学科。

涉及学科

哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。

研究范畴

语言的学习与处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法人类思维方式,最关键的难题还是机器的自主创造性思维能力的塑造与提升。

应用领域

机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。

值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的;另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。

安全问题

人工智能还在研究中,但有学者认为让计算机拥有智商是很危险的,它可能会反抗人类。这种隐患也在多部电影中发生过,其主要的关键是允不允许机器拥有自主意识的产生与延续,如果使机器拥有自主意识,则意味着机器具有与人同等或类似的创造性,自我保护意识,情感和自发行为。

实现方法

人工智能在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法(ENGINEERING APPROACH),它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法(MODELING APPROACH),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。遗传算法(GENERIC ALGORITHM,简称GA)和人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)均属后一类型。遗传算法模拟人类或生物的遗传-进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。为了得到相同智能效果,两种方式通常都可使用。采用前一种方法,需要人工详细规定程序逻辑,如果游戏简单,还是方便的。如果游戏复杂,角色数量和活动空间增加,相应的逻辑就会很复杂(按指数式增长),人工编程就非常繁琐,容易出错。而一旦出错,就必须修改原程序,重新编译、调试,最后为用户提供一个新的版本或提供一个新补丁,非常麻烦。采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统(模块)开始什么也不懂,就像初生婴儿那样,但它能够学习,能渐渐地适应环境,应付各种复杂情况。这种系统开始也常犯错误,但它能吸取教训,下一次运行时就可能改正,至少不会永远错下去,用不到发布新版本或打补丁。利用这种方法来实现人工智能,要求编程者具有生物学的思考方法,入门难度大一点。但一旦入了门,就可得到广泛应用。由于这种方法编程时无须对角色的活动规律做详细规定,应用于复杂问题,通常会比前一种方法更省力。

解决问题

早期的人工智能研究人员直接模仿人类进行逐步的推理,就像是玩棋盘游戏或进行逻辑推理时人类的思考模式。到了1980和1990年代,利用概率和经济学上的概念,人工智能研究还发展了非常成功的方法处理不确定或不完整的资讯。

对于困难的问题,有可能需要大量的运算资源,也就是发生了“可能组合爆增”:当问题超过一定的规模时,电脑会需要天文数量级的存储器或是运算时间。寻找更有效的算法是优先的人工智能研究项目。

人类解决问题的模式通常是用最快捷,直观的判断,而不是有意识的,一步一步的推导,早期人工智能研究通常使用逐步推导的方式。人工智能研究已经于这种“次表征性的”解决问题方法取得进展:实体化AGENT研究强调感知运动的重要性。神经网络研究试图以模拟人类和动物的大脑结构重现这种技能。

知识表示法

AN ONTOLOGY REPRESENTS KNOWLEDGE AS A SET OF CONCEPTS WITHIN A DOMAIN AND THE RELATIONSHIPS BETWEEN THOSE CONCEPTS.

主条目:知识表示和常识知识库

规划

智能AGENT必须能够制定目标和实现这些目标。他们需要一种方法来建立一个可预测的世界模型(将整个世界状态用数学模型表现出来,并能预测它们的行为将如何改变这个世界),这样就可以选择功效最大的行为。 在传统的规划问题中,智能AGENT被假定它是世界中唯一具有影响力的,所以它要做出什么行为是已经确定的。 但是,如果事实并非如此,它必须定期检查世界模型的状态是否和自己的预测相符合。如果不符合,它必须改变它的计划。因此智能代理必须具有在不确定结果的状态下推理的能力。 在多AGENT中,多个AGENT规划以合作和竞争的方式去完成一定的目标,使用演化算法和群体智慧可以达成一个整体的突现行为目标。

学习

主条目:机器学习

机械学习的主要目的是为了从使用者和输入数据等处获得知识,从而可以帮助解决更多问题,减少错误,提高解决问题的效率。对于人工智能来说,机械学习从一开始就很重要。1956年,在最初的达特茅斯夏季会议上,雷蒙德索洛莫诺夫写了一篇关于不监视的概率性机械学习:一个归纳推理的机械。

自然语言处理

主条目:自然语言处理

运动和控制

主条目:机器人学

知觉

主条目:机器感知、计算机视觉和语音识别

机器感知 是指能够使用传感器所输入的资料(如照相机,麦克风,声纳以及其他的特殊传感器)然后推断世界的状态。计算机视觉能够分析影像输入。另外还有语音识别 、人脸辨识和物体辨识。

社交

主条目:情感计算

KISMET, 一个具有表情等社交能力的机器人

情感和社交技能对于一个智能AGENT是很重要的。 首先,通过了解他们的动机和情感状态,代理人能够预测别人的行动(这涉及要素 博弈论、决策理论以及能够塑造人的情感和情绪感知能力检测)。此外,为了良好的人机互动,智慧代理人也需要表现出情绪来。至少它必须出现礼貌地和人类打交道。至少,它本身应该有正常的情绪。

创造力

主条目:计算机创造力

一个人工智能的子领域,代表了理论(从哲学和心理学的角度)和实际(通过特定的实现产生的系统的输出是可以考虑的创意,或系统识别和评估创造力)所定义的创造力。 相关领域研究的包括了人工直觉和人工想像。

多元智能

大多数研究人员希望他们的研究最终将被纳入一个具有多元智能(称为强人工智能),结合以上所有的技能并且超越大部分人类的能力。 有些人认为要达成以上目标,可能需要拟人化的特性,如人工意识或人工大脑。 上述许多问题被认为是人工智能完整性:为了解决其中一个问题,你必须解决全部的问题。即使一个简单和特定的任务,如机器翻译,要求机器按照作者的论点(推理),知道什么是被人谈论(知识),忠实地再现作者的意图(情感计算)。因此,机器翻译被认为是具有人工智能完整性:它可能需要强人工智能,就像是人类一样。

人工智能影响

(1)人工智能对自然科学的影响。在需要使用数学计算机工具解决问题的学科,AI带来的帮助不言而喻。更重要的是,AI反过来有助于人类最终认识自身智能的形成。

(2)人工智能对经济的影响。专家系统更深入各行各业,带来巨大的宏观效益。AI也促进了计算机工业网络工业的发展。但同时,也带来了劳务就业问题。由于AI在科技和工程中的应用,能够代替人类进行各种技术工作和脑力劳动,会造成社会结构的剧烈变化。

(3)人工智能对社会的影响。AI也为人类文化生活提供了新的模式。现有的游戏将逐步发展为更高智能的交互式文化娱乐手段,今天,游戏中的人工智能应用已经深入到各大游戏制造商的开发中。

伴随着人工智能和智能机器人的发展,不得不讨论是人工智能本身就是超前研究,需要用未来的眼光开展现代的科研,因此很可能触及伦理底线。作为科学研究可能涉及到的敏感问题,需要针对可能产生的冲突及早预防,而不是等到问题矛盾到了不可解决的时候才去想办法化解。

人机对弈

1996年2月10~17日, GARRY KASPAROV以4:2战胜“深蓝” (DEEP BLUE)。

1997年5月3~11日, GARRY KASPAROV以2.5:3.5输于改进后的“深蓝”。

2003年2月GARRY KASPAROV 3:3战平 “小深”(DEEP JUNIOR)。

2003年11月GARRY KASPAROV 2:2战平 “X3D德国人” (X3D-FRITZ)。

2016年3月9~15日,李世石 1-4 ALphaGo,ALphaGo完胜

模式识别

采用 $模式识别引擎,分支有2D识别引擎 ,3D识别引擎,驻波识别引擎以及多维识别引擎

2D识别引擎已推出指纹识别,人像识别 ,文字识别,图像识别 ,车牌识别;驻波识别引擎已推出语音识别;3D识别引擎已推出指纹识别玉带林中挂(玩游智能版1.25)

自动工程

自动驾驶(OSO系统)

印钞工厂(¥流水线)

猎鹰系统(YOD绘图)

知识工程

以知识本身为处理对象,研究如何运用人工智能和软件技术,设计、构造和维护知识系统

专家系统

智能搜索引擎

计算机视觉和图像处理

机器翻译和自然语言理解

数据挖掘和知识发现

美国

⒈ MASSACHUSETTS INSTITUTE OF TECHNOLOGY麻省理工学院

⒉ STANFORD UNIVERSITY斯坦福大学(CA)

⒊ CARNEGIE MELLON UNIVERSITY卡内基美隆大学(PA)

⒋ UNIVERSITY OF CALIFORNIA-BERKELEY加州大学伯克利分校

⒌ UNIVERSITY OF WASHINGTON华盛顿大学

⒍ UNIVERSITY OF TEXAS-AUSTIN德克萨斯大学奥斯汀分校

⒎ UNIVERSITY OF PENNSYLVANIA宾夕法尼亚大学

⒏ UNIVERSITY OF ILLINOIS-URBANA-CHAMPAIGN 伊利诺伊大学厄本那—香槟分校

⒐ UNIVERSITY OF MARYLAND-COLLEGE PARK马里兰大学帕克分校

⒑ CORNELL UNIVERSITY 康奈尔大学 (NY)

⒒ UNIVERSITY OF MASSACHUSETTS-AMHERST马萨诸塞大学AMHERST校区

⒓ GEORGIA INSTITUTE OF TECHNOLOGY佐治亚理工学院

UNIVERSITY OF MICHIGAN-ANN ARBOR 密西根大学-安娜堡分校

⒕ UNIVERSITY OF SOUTHERN CALIFORNIA南加州大学

⒖ COLUMBIA UNIVERSITY哥伦比亚大学(NY)

UNIVERSITY OF CALIFORNIA-LOS ANGELES加州大学洛杉矶分校

⒘ BROWN UNIVERSITY布朗大学(RI)

⒙ YALE UNIVERSITY耶鲁大学(CT)

⒚ UNIVERSITY OF CALIFORNIA-SAN DIEGO加利福尼亚大学圣地亚哥分校

⒛ UNIVERSITY OF WISCONSIN-MADISON威斯康星大学麦迪逊分校

中国

1、中国科学院自动化研究所

2、清华大学

3、北京大学

4、南京理工大学

5、北京科技大学

6、中国科学技术大学

7、吉林大学

8、哈尔滨工业大学

9、北京邮电大学

10、北京理工大学

11、厦门大学人工智能研究所

12、西安交通大学智能车研究所

13、中南大学智能系统与智能软件研究所

14、西安电子科技大学智能所

15、华中科技大学图像与人工智能研究所

16、重庆邮电大学

17、武汉工程大学

...

人工智能简介:

中文名称:人工智能 外文名称:ARTIFICIALINTELLIGENCE 简称:AI 提出时间:1956年 提出地点:DARTMOUTH学会 名称来源:雨果·德·加里斯的著作

“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

...
Copyright © 2009-2017.5d明星网(www.5djiaren.com) 版权所有 豫ICP备14016102号-1|手机版